Isopropanol from industrial flue gas using Cupriavidus necator I. Weickardt^{1,2}, E. Lombard¹, L. Blank², S. E. Guillouet¹

¹ TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France ² RWTH Aachen University, Institute of Applied Microbiology, Aachen, Germany

Key points

11 g L⁻¹ isopropanol was produced from CO_2 as sole carbon source with 0.16 g_{IPA}/g_{CO2}

Stable cell viability despite 3 bar overpressure and 11 g L⁻¹ isopropanol demonstrated robustness of process

Industrial biogas and incinerator flue gas as carbon source improved growth and product formation despite

Challenges

Solutions

-

Potential explosion risk $(H_2 + O_2)$

Low solubility of H_2 and O_2

Limit headspace O_2 to < 4 %

to enhance gas solubility

(explosion threshold) via nitrogen flush

Application of up to 3 bar overpressure

gas impurities

Methods

Genetic engineered strain

Inducible promoter

Gas cultivation

1.5 bar overpressure for increased gas transfer

Configurable gas feed system

Pressure decrease reflects metabolic activity

Results

Isopropanol formation in 7.5 L autotrophic bioreactor

Proof-of-concept with industrial flue gas

[1] Panich, J., B. Fong, and S. W. Singer (2021). "Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO₂". Trends in Biotechnology 39 [2] bluequarkresearch.com [3] Marc, J., E. Grousseau, E. Lombard, A. J. Sinskey, N. Gorret, and S. E. Guillouet (2017). "Overexpression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production". Metabolic Engineering 42

